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Abstract   

This study investigated the sensing of viscosity an gelation of reacting vinyl-ester (VE) resins 
using direct-current (DC) sensing technology. The resin system studied was a 
tetrabutylammonium acetate (TA)-doped Dow Derakane 411-C-50 VE resin. A model of the 
resistance of a reacting polymer liquid as a function of the geometrical parameters of the 
DC-sensing system and the material properties of the resin system was developed. The model 
inputs were conduction path length (L), conductor surface area (A), resin viscosity CnCO), 
concentration of TA ions (Q), charge of TA ions (Qj), and size of TA ions. Estimates, using the 
theoretically determined values for the model inputs, for the resistance of the DC sensing system 
employed in this investigation were the same order of magnitude as the experimentally 
determined values. The developed model of a reacting polymer liquid was further extended to 
the sensing of gelation and then successfully applied to the on-line sensing of viscosity. 
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1. Introduction 

As the composites industry grows, there is an increasing need to improve quality and reduce 

the cost of producing composite structures. To meet these demands, industry has begun to 

develop and refine new technologies to monitor the condition of a composite during 

manufacturing. A technique currently under development at the U.S. Army Research Laboratory 

(ARL) is sensors mounted as roving threads (SMARTweave), a patented sensor system that 

monitors the direct-current (DC) conductance of a resin as it flows into a resin transfer molding 

(RTM) mold and cures [1-6]. This is done through an overlapping, but not touching, grid of 

wires; one set serves as excitation leads, and an orthogonal set in a parallel plane serves as 

sensing leads. The resin acts as a resistor and, under an applied voltage, current is induced in a 

circuit containing the resin gap resistor. 

One common approach in single-point flow and cure sensing is to monitor the dielectric 

response of a material by the application of an alternating current. However, such techniques 

track not only the ionic conductivity of the curing resin but a more complex dielectric response 

as well. The use of a DC measurement technique allows for a simpler measurement of DC 

conductance for rapid continuous multiplexing of potentially thousands of "point sensors" in a 

mold. 

Many resin systems, such as vinyl esters (VEs), commonly used in composite manufacturing 

have an inherently high resistivity. VE resin systems have a wide range of commercial 

applications and are used in composite structures such as bridge supports, railroad cars, and 

diesel busses. VE resin systems are easy to process as a result of their low viscosity and 

adjustable gel times, making them amenable to composite liquid-molding processes. Resin, 

initiator, and accelerator chemistry control the viscosity and gel times of VE resins. 

In this report, a model is developed that will predict the relationship between resistance and 

material properties such as viscosity, concentration of ions, and SMARTweave geometrical 

parameters. The resin system that is investigated is a Dow Derakane 411-C-50 VE resin system. 



An organic salt, tetrabutylammonium acetate (TA), has been added to the resin to optimize DC 

sensing and produce a more controlled ionic conductivity for the purpose of linking the response 

of DC conductivity measurement systems such as SMARTweave to more important 

characteristics of the curing process such as viscosity, time to gel, and time to cure [6]. The 

model inputs are characterized through the use of SMARTweave single-node test cells (SNTC) 

in combination with viscometry and differential scanning calorimetry (DSC). The culmination 

of these studies is the integration of a DC-sensing system and a ionic conductivity model that can 

provide real-time information about the viscosity and onset of gelation during the cure of VE 

resin systems. 

2. Background and Theory 

Two parameters govern the operation of DC-sensing systems: (1) the geometric 

configuration of the sensing system and (2) the material properties of the resin system. The 

geometric parameters of interest are conductor separation distance and surface area. The 

material properties of interest are viscosity, concentration of ions, and size of ions. Both the 

viscosity of the transporting medium and ionic radius influence ionic mobility. 

Figure 1 shows the chemical structure and makeup of the VE and styrene monomers. A 

cobalt napthenate (CoNap) accelerator is used along with a cumene hydroperoxide-based 

catalyst, Trigonox 239A. The system is mixed with 2.0 weight-percent (wt-%) Trigonox 239A 

and 0.2 wt-% CoNap, then allowed to cure at room temperature. 

The polymerization of VE and styrene resin occurs by a free radical polymerization reaction. 

Free radical polymerization, or chain polymerization, is characterized by the growth of a 

polymer chain in which only one repeating unit is added to the chain at a time. In the first stage 

of chain polymerization of VEs, an organic peroxide or hydroperoxide, called an initiator, attacks 

the vinyl group in the VE and generates a free radical. For a low-temperature cure, an 

accelerator, such as CoNap, is used to lower the free-energy barrier to free radical generation. 

Free radicals generated by the initiator then bond with other free radicals, either those adjoined to 
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Figure 1. VE and Styrene Monomer Structures and Chemical Makeup. 

other VE functional sites or to styrene monomers. The repeated generation of free radicals and 

subsequent bonding of adjacent free radicals is called cross-linking. 

A fairly rapid increase in viscosity characterizes the initial stages of chain polymerization 

reaction. The point at which viscosity tends toward infinity is gelation and is characterized by a 

cross-linked VE and styrene network, swollen with unreacted monomers. As the reaction 

proceeds, further incorporation of monomers in the polymer network is controlled more by 

diffusional mobility of monomers than by reaction kinetics. Vitrification is the point at which 

monomers are unable to diffuse to active sites along the polymer chain, and the material becomes 

glassy in nature, or vitrified. 

In a related study, the ionic conductivity of different dopants for VE resin were characterized 

[6]. The addition of dopants such as TA were found to provide consistent concentrations with 

minimal effects on viscosity, degree of conversion, and gelation times. Figure 2 shows the 

chemical structures of tetrabutylammonium and acetate ions. The hydrodynamic radius of 

tetrabutylammonium and acetate ions has been calculated to be 5.5 and 3.75 Ä, respectively [6]. 
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Figure 2. Tetrabutylammonium and Acetate Ions. 

A model to predict the resistance of a liquid resin based on the geometric parameters of the 

sensing system and on the properties of the resin was previously developed by Schwab, Levy, 

and Glover [7]. The model is based on the balance between the electrostatic force felt by an ion 

being acted upon by an applied potential difference and the viscous drag force that the ion 

encounters as it tries to move through a viscous medium. Equation (1) is the result of such a 

balance of forces: 

Rj(t) = ^Ä CD 
AI^- 

The resistance, Rj(t), is the resin resistance at a SMARTweave sensor junction, T|(t) is viscosity 

at time (t) in Pascal-seconds, L is the conductor separation distance in meters, A is area of the 

effective DC electric field in square meters, Q is the concentration of the ith ion in ions per cubic 

meter, Qi is the charge of the ith ion in coulombs, and ri is the radius of the ith ion in meters. For 

the TA-doped VE resin system, equation (1) can be written as 

R](t)=_—«awt—„. (2> 
C,Q?   C2Q'    C„(E 
 i i--| 1  

h r2 



where the summation term of u represents those contributions to ionic conductivity due to 

impurity ions already present in the resin system and the subscripts 1 and 2 represent the 

tetrabutylammonium and acetate ions, respectively. 

Impurity ions are inherent to each of the VE resin, initiator, and catalyst components of the 

resin system. However, because this study dopes the VE resin to a much higher level of 

conductivity, the contribution of impurity ions to conductance is considered negligible. Equation 

(2) is only valid for low degrees of conversion. During and after gelation, ionic conductivity is 

no longer based strictly on the change in viscosity of the resin, but on a more complex change in 

ionic mobility. 

The resistance determined in equation (2) can then be converted into a measured voltage by 

the following equation: 

/ 
V(t) = 12 Rs 

[Rs+Rt(t)J 
(3) 

where Rs is a fixed-drop resistance in the DC conductivity monitoring system, which, for this 

investigation, was equal to 10 MQ. The voltage profile generated by equation (3) is often easier 

to interpret than a resistance profile and is frequently used in the manufacturing environment 

when DC sensing is employed. In the following section, the experimental methodology used to 

verify and characterize the model inputs, L, A, Q, and T|, and validate the model output, R, is 

discussed. 

3. Experimental Procedures 

This section is broken into two major parts: (1) description of the basic components and 

operation of a SMARTweave DC-sensing system and (2) methodology for the characterization 

and validation of model inputs and output. The second section is further broken into three parts: 



(1) characterization of L and A, (2) characterization of t] and Q and (3) the validation of the 

model output Rj(t). 

3.1 SMARTweave System Components and Operation. SMARTweave is a patented [1] 

sensor system that measures and tracks the DC conductance of a resin as it flows into an RTM 

mold and cures. This is done through a noncontacting grid of wires—one set serving as 

excitation leads and an orthogonal set in a parallel plane serving as sensing leads. The resin acts 

as a resistor, and, under an applied voltage, current is induced in a circuit containing a drop 

resistor, called a sense resistor (Rs). 

The SMARTweave system used in this study consists of a National Instruments SCXI 

interface chassis (where the excitation and sense leads are connected), a National Instruments 

multiplexer (for switching from one set of leads to another), and a computer (for data display and 

storage). A 12-V power supply provides a DC voltage to the excitation leads. Only one 

excitation lead is active at any time. The multiplexer sends out a voltage to the excitation leads, 

and the SCXI chassis monitors the sense leads for an induced current. The induced current is 

detected as a voltage across Rs. 

Figure 3 shows a circuit diagram for a single-node voltage experiment. During a single-node 

test, excitation voltage remains constant across a single excitation lead. In the presence of a 

conductive medium, a current is induced in the sense lead and a voltage is created across Rs. 

Changes in resin resistance, Rj(t), are then recorded as changes in Vm(t) by the SMARTweave 

software via equation (3). For the single-node experiments performed in this study, a 12-V 

applied voltage and a 10-MQ drop resistance were used. 

Figure 4 shows a schematic of an SNTC. The SNTC consisted of a clear plastic syringe, 

which could be varied in size and diameter, and one SMARTweave sense and excitation lead. 

Sense and excitation leads were made of sewing needles. The plastic syringes were easy to 

pierce with the sharp sewing needles and formed a tight seal around the needles, preventing any 

leakage of resin from the cell.   Further, the level markings on the syringes assisted in the 
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Figure 3. SMARTweave Single-Node Circuit Schematic. 
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Figure 4. SNTC-1 Configuration. 

repeatable placement of needles for separation distance control. Lastly, the surface area of the 

needles was easy to measure and avoided conductor end effects. 

3.2 Model Input Characterization. The geometric model inputs L and A were 

characterized by measuring (1) changes in Rj with changes in lead separation distance (L), and 

(2) changes in Rj with changes in conductor surface area (A). A theoretical model of an SNTC 

electric field was also developed to determine a quantitative estimate of both L and A [6]. The 

material model inputs were characterized by measuring (1) changes in Rj with changes in ionic 



concentration (Q), (2) changes in Rj with changes in viscosity (Tj(t)) as a function of temperature 

for both a noncuring and curing system, and (3) the effect of curing temperature on 

SMARTweave voltage [i.e., the validation of Rj(t)]. The following sections describe the 

experimental procedures for the measurements previously listed. Resistance and voltage 

measurements were collected by the use of a SMARTweave system and an SNTC apparatus. 

3.2.1 Characterization ofL and A. The effects of lead separation distance and conductor 

surface area on the resistance of doped VE resin were measured using a SMARTweave system 

and a series of SNTCs. The series of SNTCs varied in diameter from 8.6 to 21.5 mm. As the 

diameter of the SNTC was increased, more conductor surface area was exposed. In this way, the 

effects of increased effective electric field area on resistance could be studied. For each SNTC, 

the lead separation distance was varied from approximately 7 to 60 mm. 

3.2.2 Characterization ofd and 7j(t). American Society for Testing of Materials (ASTM) 

standard D257-78 offers a variety of methods for determining the DC conductivity of a material. 

Figure 5 shows the basic components and dimensions of the DC conductivity cell used in this 

study. In the DC cell shown in Figure 5, the gap between the inner and out cylinders is filled 

with the resin and resistance measured with an ohm-meter. For this study, VE resin was doped 

with an organic salt, with weight-percent concentrations ranging from 0.05 to 7.8 wt-%. A 

methodology of limiting ionic conductance was then used to determine the concentration of ions 

as a function of the mass of dopant added [6]. hi order to characterize viscosity, the resistance 

and viscosity of both a noncuring and curing doped VE resin as a function of temperature were 

measured using a modified SNTC apparatus. The viscosity of doped VE resin was measured 

using a Brookfield viscometer and small sample adapter (SSA), which was capable of regulating 

temperature via a water jacket and a circulating water bath. The modified SNTC consisted of 

two needles whose tips were held 1.0 mm apart by a Teflon ring. The needle tips were then 

attached to the rim of the SSA and inserted into the resin. Resistance and viscosity were then 

measured at temperatures ranging from 30 to 70°C for a noncuring system and 30 to 60°C for a 

curing system. 
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Figure 5. DC Cell Configuration. 

3.2.3 Validation ofR/t). The model output of resistance as a function of time for a curing 

doped VE resin was studied by isothermal curing of the resin in an SNTC apparatus. Isothermal 

cure experiments were performed at 30, 40, and 50°C. The samples tested consisted of VE resin 

with 0.2 wt-% CoNap, 2.0 wt-% Trigonox 239A, and 0.1 wt-% dopant. After the samples were 

prepared, they were added to the SNTC apparatus and the SMARTweave voltage was monitored. 

In this way, the changes in resistance are to be coupled with changes in viscosity at varying 

temperatures. The temperature was monitored to ensure that exotherms during cure were 

negligible and the isothermal condition was maintained. 

The next section provides results of the characterization and validation of the model inputs 

and output. Emphasis is put on understanding the results of the SNTC experiments in terms of 

the ionic conductivity of a polymer liquid [i.e., within the range of equation (2)]. 

4. Results and Discussion 

This section is broken into four parts: (1) characterization of L and A, (2) characterization of 

Q and T|(t), (3) validation of model output, and (4) application of the model to the in-situ sensing 

of viscosity and gelation. 



4.1 Characterization of L and A. Figure 6 shows the change in resistance with changes in 

lead separation distance and conductor surface area. There is a linear behavior between 

separation distance and resistance for each area tested. The increase in available area, shown in 

Figure 6 as the wetted conduction surface area, increases the area over which the electric field 

acts. 
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Figure 6.  Resistance vs. Distance for Lead Separation and Conductor Surface Area Effect 
Studies. 

As the available area was increased, the slope of resistance vs. separation distance became 

less. This result is predicted by equation (2). Increases in A wiU decrease the slope of resistance 

over separation distance, as shown in equation (4): 

Rj(t) 6mi(t) const. 

L 
A 

QQ2 ( C2Q2" 
ri          h   . 

A 
(4) 
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The effective area over which the electric field acts within a basic setup of a SMARTweave 

node was modeled using the following assumptions: (1) steady-state electric field (not changing 

with time), (2) uniform medium has dielectric constant of unity, (3) conduction surfaces have a 

uniform charge distribution (X), and (4) the conductive surfaces are infinite in length. The 

solution for an infinite wire with a uniform charge distribution is 

E.-2* (5) 

where k is Boltzman's Constant (k = 1.3806810"23 J/K), X is charge per unit length in coulombs 

per meter, and r is the radial distance in meters from the axis of the wire [8]. 

A SMARTweave node can be modeled by superimposing the solutions for two infinite and 

orthogonal lines of charges, which are separated by a distance d. Figure 7 shows the basic 

configuration used to model a SMARTweave single-node experiment. 

As previously noted, the solution for an infinite line of charge is easily determined. Using 

the coordinate system shown in Figure 7, the solutions for the electric field strength due to lines 

1 and 2 are 

R=— (6) 

and 

E2 = 
2k(-A.) ^ (7) 

h 

By rewriting ri and r2 in terms of the Cartesian coordinate system used and using the principle of 

superposition, one gets 

11 
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Figure 7. Electric Field Model of a SMARTweave Single Node Experiment 

Et = 
2kk 

^/x2 + y2 
(8) 

and 

E2 = 
2H-X) 

Vz2+(y-d)2 (9) 

The total electric field strength felt at any point in space is then 

ET=E1+E2 = 
2k?i 2kX 

Vx2+y2    Vz2+(y-d)2 
(10) 

Figure 8 shows a contour plot of Er at d/2 on the y-axis. The total electric field, Er, is strongest 

near the intersection, and along the axis, of the lines of charge. Ions located in these regions will 

feel the strongest pull toward the line of opposite charge, in the direction of increasing voltage 

potential.     Figure  8   shows  that  an   SNTC   setup   can  be  treated  mainly  as  a  single 

12 
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Figure 8. ET vs. Distance at the Bisector of Two Infinite Lines of Charge. One Line of 
Charge Lies Along the x-Axis and the Other Along the y-Axis. Contour Values 
Represent ET Magnitudes. 

line of charge, especially at those regions furthest from the point of intersection. Therefore, an 

estimation of the average path length that the ions follow can be inferred from equation (5). 

Equation (5) states that, for the single-line case, the strength of the electric field decays as 1/r. 

Consequently, the driving forces diminish, and the path length increases such that the number of 

ions that travel to the lead in any given time period decreases at a rate of 1/r. 

The total number of path lengths is equal to the total number of ions present in the system. 

Further, let the available path lengths vary from 1 Ä to 10 mm. Knowing this, the average path 

length, L, of a 1/r distribution of ions is approximately 0.3 mm. The average path length is 

independent of concentration; hence, it is valid for any concentration of distribution 1/r. The 

"effective" area of the electric field created around an infinite wire with a maximum path length 

of 5 mm is 

A = 27tr2= 1.5707x10" (11) 

where A is in square meters. 
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4.2 Characterization of Q and T|(t). Figure 9 shows the change of resistance with changes 

in the inverse concentration of ions. The concentration of ions was determined from DC 

conductivity cell measurements and the method of limiting ionic conductivity [6]. The 

concentration of ionic species was found to be approximately 3.62 x 1019 ions/m3 for a 0.1 wt-% 

concentration of TA. The linear behavior of resistance with changes in the inverse concentration 

of ions shown in Figure 9 confirms the dependence of resistance on the concentration of ions as 

modeled by equation (3), which states 

R{t) = üaK2t. const. 1 

A£ 
C;Qf     Iconst.2-Ci 

(12) 
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Figure 9. Conductivity vs. Inverse Concentration of Ions. Data Points Are Shown Along 
With a Linear Curve Fit. 

Figure 10 shows the change in resistance with changes in viscosity for a noncuring TA-doped 

VE resin. The linear relationship between changes in resistance with changes in viscosity seen 

14 
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Figure 10. Resistance vs. Viscosity.   Linear Fit Shown With Data Points.   Data Points 
Shown Along With a Linear Curve Fit. 

in Figure 10 confirms the dependence of resistance on viscosity as modeled by equation (3), 

which states that 

R.(t) = _^Q^ = const m 

AS C& 
(13) 

Figures 6, 9, and 10, along with equations (4), (12), and (13), have proven that the model of 

polymer electrolytes presented in equation (3) is a valid means of understanding the relationship 

between resistance and L, A, Q, and T|(t). Therefore, it is now useful to understand the 

relationship between resistance and viscosity of a reacting polymer. This is done by monitoring 

the viscosity and resistance of a curing VE resin at a different temperature; but, first, it is 

desirable to understand the change in viscosity of a noncuring VE resin with temperature. 

15 



Figure 11 shows the change in viscosity with changes in temperature for a noncuring 

TA-doped VE resin. The behavior shown in Figure 11 is typical of most polymeric systems [9]. 

The viscosity vs. temperature behavior of a noncuring TA-doped VE resin follows the following 

form: 

t|(T) = 8.522xl(T8e RT (Pa-s), 
35,218 

-8 p,   RT (14) 

where T is temperature in Kelvin, R is the universal gas constant, and the correlation coefficient 

is 0.99656. 
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Figure 11. Viscosity vs. Temperature for TA-Doped VE Resin.   Data Points Are Shown 
Along With an Arrhenius Curve Fit 

Now that the estimates for L, A, Q, and T|(T) have been determined, a theoretical estimate of 

resistance can be calculated using equation (2). The theoretical estimate of the resistance of an 

16 



SNTC apparatus for a noncuring TA-doped VE in which a 1-V drop across a 0.005-m lead 

separation distance occurs for a 0.1-wt-% TA-doped VE resin with a viscosity of 0.1 Pa-s at 

room temperature is 864 M£l The experimental value expected for such a case is 110 MQ. The 

theoretical estimate is within an order of magnitude of the experimentally determined value. 

Given the variability in resin chemistry, experimental setup, and data collection, this is a very 

good estimate of the resistance of an SNTC configuration and doped VE resin system. 

The following section validates the model output of Rj(t) for a curing VE resin. First, an 

understanding of how resistance and viscosity of a reacting polymer change as a function of 

temperature is developed. Then, equation (2) is applied and analyzed to determine its ability to 

sense gelation. 

4.3 Validation of Rj(t). In order to validate the ionic conductivity of a curing VE resin, it is 

first necessary to characterize the change in viscosity of a curing resin as a function of cure 

temperature. Figure 12 shows the viscosity of curing TA-doped VE resin at different cure 

temperatures. Increases in isothermal cure temperature are followed by a decrease in gelation 

times. Remember, gelation can be defined as the point at which the resin viscosity tends toward 

infinity. 

The next step in the validation of R/t) is the characterization of ionic conductance as a 

function of cure temperature. Figure 13 shows SMARTweave voltage vs. time for the isothermal 

cure experiments. The initial regions of the voltage curves show a rise in voltage as the resin 

samples reach the temperature of the water bath. Once the sample reaches the temperature of the 

water bath, it remains at that temperature. As cure and network formation start to increase, the 

voltage signal starts to drop and eventually becomes negligible. Increases in cure temperature 

result in increases in peak voltage (i.e., conductivity) and decrease periods of measurable 

voltage. This results from an increased rate of reaction, which increases with increasing 

temperature. 

17 
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Another way of viewing the SMARTweave data shown in Figure 13 is to plot the rate of 

change of the SMARTweave voltage vs. time (dV/dt). Figure 14 shows the rate change of 

SMARTweave voltage vs. time for isothermal cure temperatures of 30, 40, and 50°C. The 

minimum experienced in the rate change of voltage (dV/dtn,in) is a function of cure temperature. 

As cure temperature increases, dV/dtmin becomes more defined and greater in magnitude. 

U > 
U 

00 

i—i—i—i—i—i—r 

Temperature - 30° C 

Temperature - 40° C 

Temperature - 50° C 

20 30 

Time (min) 

Figure 14. SMARTweave Voltage vs. Time. Markers Do Not Represent All Data Points 
Taken. All Data Points Fall on Lines Connecting Markers. Vertical Lines 
Mark the Minimum Points of Each Curve. 

Equation (3) can be rearranged and combined with equation (4) to predict the rate change of 

SMARTweave voltage with time. The rate change of voltage as a function of T|(t), L, A, Q, and 

r; is 

dV 

dt 
— = -12 

dRj(t) 
R+—3-— 

dt 
(R^RjCt))2 

(15) 
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Assuming that only viscosity changes with time, 

^+
dll(t)T 

dt CtQf | C2Ql 
(16) 

where 

R,= 10Mß (17) 

and 

Rj(t) = - 
67Dl(t) 

CtQ
2 ! C2Q2 

(18) 

Using the viscosity curves shown in Figure 11, the rate change of SMARTweave voltage can 

now be predicted by inserting the values for T)(t) and dt|(t)/dt into equations (15) and (17). 

Figure 15 shows the predicted dV/dt curves for TA-doped VE resin at 30,40, and 50°C. 

As can be seen from Figure 15, equation (3) also predicts a dV/dW The minimum occur at 

the onset of gelation, at which time the viscosity of the VE resin starts an exponential climb 

toward infinity. As cure progresses, network formation can cause L to increase as the pathways 

to ionic mobility decrease in number and become more tortuous in nature. Therefore, once 

dV/dtmin has been reached, equation (8) can no longer be used to predict the electrical properties 

of a curing TA-doped VE resin. 

The application of equation (3) to processing is clear. Once dV/dW has been detected, the 

flow of resin within the part becomes severely impeded. In other words, dV/dVin can be used to 

determine the point at which resin infusion into the preform will no longer be practical.  The 
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Figure 15. Predicted SMARTweave dV/dt vs. Time. Lines Mark the Predicted dV/dtnün. 

following section couples the lessons learned in the previous sections with equation (2) to 

develop a method by which the DC sensing can be used to monitor the viscosity of a curing resin 

system. 

4.4 Application of Model to DC Sensing of Viscosity. There is yet another use of 

equation (3) and dV/dW If all parameters except viscosity in equation (3) are assumed 

constant, normalization of equation (3) yields 

Tl(t)=Tlo(T) 
R(t) 
Rn 

(19) 

where T|o (T) and Ro are the viscosity and resistance at time t = 0, respectively. Equation (19) 

can be used to calculate the viscosity vs. time of a curing resin using the SMARTweave voltage 

profile. Figure 16 shows the predicted viscosity for isothermal cure SNTC experiments at 30, 

40, and 50°C. For SNTC tests at 30, 40, and 50° C, the dV/dtnün occurs before the viscosity 

reaches 0.15 Pa-s. 

21 



03 
PL, 

«3 
O 
o 
CO 

PH 

120 

1.00 

0.80 

0.60 

0.40 

020 

0.00 

i i i i i i i i i i i i i I' '' i i'1 ' 

- Temperature - 30>C 

- Temperature - 40s C 
-Temperature-KFC 

, i i i i , , i i i i i i t i i i i i i i i i i I i i i t I i i i i 

10      15      20      25      30      35      40 

Time (min) 

Figure 16. Calculated Viscosity vs. Time for SNTC-4 Isothermal Cure Studies. 

Once the viscosity reaches 0.15 Pa-s, it begins to increase rapidly, reflecting the initial 

formation of a rigid cross-linked network of VE and styrene polymer. After a viscosity of 

0.15 Pa-s has been reached, equations (3) and (19) are no longer valid. This is due to the 

increase in L with network formation. 

5. Conclusion 

In this investigation, a model of the resistance of a TA-doped VE resin, up to gelation, was 

developed and the material and geometric parameters of that model were successfully 

characterized. A single SMARTweave sensor-node configuration was modeled to yield 

estimates of resistance, viscosity, and onset of gelation for a curing resin system. SMARTweave 

was shown to be an effective system for in-situ monitoring of the viscosity of a curing VE resin 

and as a viable tool for determining the onset of gelation. It was determined that the onset of 

gelation causes a minimum in the rate of change of ionic conductivity and that the viscosity of a 

curing TA-doped VE resin system can be determined through measurements of ionic 

conductivity. 
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